
Software Engineering

and Architecture

Distributed Systems

An Introduction

Intro…

• Distributed Computing is the last major SWEA topic

– Our perspective: Programming and Pattern Perspective

• Curriculum: My second book ☺

– Confusion: Looks much the the first…

– Get it from https://leanpub.com/frds

• For the price of a box of beer…

– Yes, I like pyramids !

CS@AU Henrik Bærbak Christensen 2

Distributed System

• Why?

– To speed up computation

• Google search, machine learning, and (a few) other cases

– To share information

• Everything else! (Slight exaggeration!)

CS@AU Henrik Bærbak Christensen 3

Limitations

• Distributed systems and distributed computing is a…

• We will limit ourselves to a ”niche”

CS@AU Henrik Bærbak Christensen 4

… vast subject area !!!

Client-server Architectures using Remote Method Invocation

… this niche covers a lot of systems in practice☺

And Limiting ourselves

• Even that is

• … because it must be

– Highly available, performant, and secure

• And that is topics in advanced software architecture

CS@AU Henrik Bærbak Christensen 5

… difficult to make!!!

We will only consider happy path:
All computers and networks are working;

Few users and none that are malicious

Client-Server

• You all know ‘client-server’ architectures, but…

CS@AU Henrik Bærbak Christensen 6

Server

Client
Client

Client
Client

Client

Reactive

Active

Ala: web browsing, facebook, …

Client-Server

• One big difference from all you have been doing up until

now…

– You have been building “programs” = all behavior in one ‘unit’

• A client-server system consists of two programs

• The client program: The one the user runs

– Communicating with…

• The server program: Well hidden in some server room

– WarpTalk – the server is provided by Clemens

CS@AU Henrik Bærbak Christensen 7

Or Visually

CS@AU Henrik Bærbak Christensen 8

game.playCard(Findus, ff);

game.playCard(Findus, ff);

Client program

Server program

Or Visually

CS@AU Henrik Bærbak Christensen 9

game.playCard(Findus, c) {
 result =
 sendToServer(“Findus tries to play ff”);
 return result;
}

Await incoming command, c {
 if (c == “Findus tries to play ff”) {
 r = game.playCard(Findus,ff);
 send ‘r’ back to client;
 } else …

Client program

Server program

Or Visually

CS@AU Henrik Bærbak Christensen 10

game.playCard(Findus, c) {
 result =
 sendToServer(“Findus tries to play ff”);
 return result;
}

Await incoming command, c {
 if (c == “Findus tries to play ff”) {
 r = game.playCard(Findus,ff);
 send ‘r’ back to client;
 } else …

Client program

Server program

One Word of Caution

• We will happily disregard security !!!

• Security is so important that we ignore it!

– Because the real security techniques is one big set of hard

bindings and strong coupling

• You need certificates that tie you to a specific DNS name

– Certificate stores, key pair generation, trust chains, yaga yaga

• Quite a lot of extra coding and makes experiments difficult

• Morale: Add that stuff for real production usage !

CS@AU Henrik Bærbak Christensen 11

The History

• Birrell and Nelson, 1984:

– “allow calling procedure on remote machines”

– A calls procedure f on B means

• A suspends, information on f is transmitted to B

• B executes the f procedure

• B sends the result back to A

• A resumes

CS@AU Henrik Bærbak Christensen 12

Grounding Example

TeleMed
Inspired by Net4Care:

https://baerbak.cs.au.dk/net4care/

Case

• Demographic challenges

– 2009: 70% of public health expenditure goes to chronic diseases

– 2040: 100% more elderly

• Geographical challenges

– Larger, fewer hospitals

– Fewer general practitioners

• Leads to a need for telemedical solutions

– ICT-supported healthcare services where some of the people

participating in service delivery are not co-located with the

receiver of the service

CS@AU Henrik Bærbak Christensen 14

Vision

• Vision

– Replace out-patient visits by

measurements made by

patients in their home

– Move data from home to

regional/national storage so all

health care personal can view them...

• Motivation

– Reduce out-patient visits

• Better quality of life

• Cost savings

• Better traceability and visibility

CS@AU Henrik Bærbak Christensen 15

Story 1

1) Inger measures her BP
using her TeleMed terminal

2) BP measurement stored
as HL7 document

CS@AU Henrik Bærbak Christensen 16

Story 2

1) GP queries last month’s BP
measurements for Inger using
web browser

2) Query for all BP documents
associated with Inger

CS@AU Henrik Bærbak Christensen 17

(What is XDS)

• Cross-Enterprise Document Sharing

– One Registry + Multiple Repositories

– Repository: Stores clinical documents

• (id,document) pairs

– Registry: Stores metadata with document id

• Metadata (cpr, timeinterval, physician, measurement type,...)

• Id of associate document and its repository

• Think

– Registry = Google (index but no data)

– Repository = Webserver (data but no index)

H B Christensen 18

(What is HL7)

• HL7 is a standard (complex!) for clinical

information storage and exchange.

– Version 3 loves XML!

• Our version:

H B Christensen 19

Real version:

TeleMed Design

• Roles involved

• TeleObservation: Represents a measurement

• HomeClient: Responsible for measuring + uploading

• TeleMed: Responsible for storage and queries

CS@AU Henrik Bærbak Christensen 20

• Start a server

– gradle serverHttp

• Send an obs.

– gradle homeHttp

– … -Psys=126 -Pdia=70

-Pid=pid17

• GP review in browser

– http://localhost:4567/bp/pid17

Demo

21

Story 1

Story 2

Source Code

• The source code is open

source at

– https://bitbucket.org/henrikbaerb

ak/broker/

– Download or Fork

• You will want its code to

learn the Broker pattern…

– But your HotStone mandatory

only needs to fetch the Broker

library using gradle…

• As with MiniDraw library

CS@AU Henrik Bærbak Christensen 22

https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/

Source Code

• Subprojects

– Broker: Core roles + default

implementation of some

– TeleMed: The TeleMed code

including tests of broker code

– Others: We will return to these

next…

CS@AU Henrik Bærbak Christensen 23

Issues in Distribution

Why is it hard?

Challenge

• How guys like me like to code:

• Which is then something like this on the client:

CS@AU Henrik Bærbak Christensen 25

Challenge

• However - networks only support two asynch functions!

• Which is not exactly the same as

CS@AU Henrik Bærbak Christensen 26

Issues (at least!)

• Send/receive is a too low level

programming model

• Send() does not wait for a reply from server (Asynch)

• Reference to object on my machine does not make

sense on remote computer (memory address)

• Networks does not transfer objects, just bits

• Networks are slow

• Networks and Remote computers may fail

• Networks are insecure, others may pick up our data

CS@AU Henrik Bærbak Christensen 27

Architectural Issues: Not SWEA stuff. (Follow my EVU course once you are in a job ☺)

Performance QA

Availability QA

Security QA

Performance

• Just how much slower is a network call compared to a

local in-JVM memory call?

• Imagine that your next trip to the supermarket for a soda

was 275 times slower???

– 10 minutes walk versus 46,8 hours walking ☺

CS@AU Henrik Bærbak Christensen 28

Elements of a Solution

• On the ‘happy path’, we need to

– Make the HomeClient invoke a synchronous method call on a

remote TeleMed object using only network send/receive

– Keep our OO programming model: telemed.processAndStore(to);

• That is invoke specific method on remote object

– Convert TeleObservation object into bits to send it, and convert it

back again

– Locate the remote TeleMed object

CS@AU Henrik Bærbak Christensen 29

Elements Overview

• Solutions are

– Request/Reply Protocol

• Simulate synchronous call (solves (partly) concurrency issue)

– Marshalling

• Packing objects into bits and back (solves data issue)

– Proxy Pattern

• Simulate method call on client (solves programming model issue)

– Naming Systems

• Use a registry/name service (solves remote location issue)

• Bundled together these constitute

– The Broker pattern

CS@AU Henrik Bærbak Christensen 30

Request/Reply

The Protocol

• Known from every WWW access you have ever made…

– Firefox will block until a web page has been received

CS@AU Henrik Bærbak Christensen 32

Pairing Send/Receives

• Client does

– Send() and

receive

• Server does

– Receive() and

send()

• Roles

– Client is active – initiate action

– Server is reactive – awaits actions and then reacts

CS@AU Henrik Bærbak Christensen 33

Marshalling

Or Serialization

CS@AU Henrik Bærbak Christensen 34

Definitions

CS@AU Henrik Bærbak Christensen 35

Two Basic Approaches

• There are two approaches

– Binary formats

• Google ProtoBuf, proprietary

– Textual formats

• XML, JSON, proprietary

• Exercise: Costs? Benefits?

CS@AU Henrik Bærbak Christensen 36

JSON blood pressure

And we need more

• As we can send only bits, we also need to marshal

information about the method and object id!

CS@AU Henrik Bærbak Christensen 37

Note

• Marshalling is fine for atomic datatypes (int, double, char,

array, …) but…

• What about object references?

– inventory.addCustomer(c) where c is Customer object?

– Issue: the ‘c’ is an object reference but how to a use ‘c’ on the

client if the object is located on the server?

• Actually, it sort of depends on parameter passing…

CS@AU Henrik Bærbak Christensen 38

Parameter Passing

• Pass by reference

– The Java style for all objects

– You do not get the Customer value, you get a reference to it!

– public void addCustomer(Customer c);

• Pass by value

– Java does this for primitive types, like int and double

– You do get the value itself

– public void deposit(double amount);

CS@AU Henrik Bærbak Christensen 39

At Machine Level

• All values are stored in memory on chunks of 64 bits

– int value = 42;

– int fish = 77;

– String a = “Hej”;

• Internally, any variable/

object reference is a

reference/pointer = a

memory address.

• In C and C++ you can get that memory address, using &

– value == 42 but &value = C010; and &fish = C013

CS@AU Henrik Bærbak Christensen 40

42

77

”H”

”e”

”j”

C019

At Machine Level

• All values are stored in memory on chunks of 64 bits

– String a = “Hej”;

• An object reference in Java

is not the “Hej” characters but

the memory address of it!

– a = C019 (reference to string)

• String a = null; // C014 = 0L

• a = new String(“Hej”); // allocate space for string, put

address of that space into C014

CS@AU Henrik Bærbak Christensen 41

42

77

”H”

”e”

”j”

C019

… Which is why…

• You are taught to use .equals() instead of ==

– If (x == 7) correct – value equality

– If (s == “Hej”) incorrect – reference equality

– If (s.equals(“Hej”) correct – values match

• (Most of the time ‘s == “Hej”’ actually works in Java,

because the compiler treats Strings in an intelligent way

(which makes it confusing, sigh))

CS@AU Henrik Bærbak Christensen 42

… And Which is Why…

• You in HotStone should compare cards using reference

equality

– If (card1 == card2)

– Because if you do

– If (card1.equals(card2))

– Then you get it wrong! Why?

• Hint: You may have two Uno cards on the hand/field, right.

– Are they the same card?

CS@AU Henrik Bærbak Christensen 43

Java References

• If you create a class, and do not override ‘toString()’ you

get a glimpse of that memory address

– The JVM does some trickery so it is not a clean/real memory

address, but anyway…

CS@AU Henrik Bærbak Christensen 44

In C and C++ (and Go)

• In C and C++ you can actually choose…

– If the first call adds 10 to value, what happens to ‘value’ at the call

site?

• int v = 7; fooByValue(v); print(v);

– If the second call adds 10 to value, what happens to value at the

call site?

• int v = 7; fooByRef(&v); print(v);

CS@AU Henrik Bærbak Christensen 45

value += 10;

In Our Broker

• The semantics change in our Broker Pattern

– localObject.say(”Hello”) localObject pass by reference

– remoteObject.say(”Hello”) remoteObject pass by value

• Exercise: Why?

CS@AU Henrik Bærbak Christensen 46

Our Broker only supports pass by value!
(next week we introduce a trick to simulate pass by ref)

Consequences

• If my client sends an object – pass-by-value

– Person { String name; int age} with value { “Mikkel”, 29 }

• And the server receives this object and then change

– Person { String name; int age} to value { “Magnus”, 26 }

• Then what happens in the client’s person object ???

CS@AU Henrik Bærbak Christensen 47

JSON Libraries

Libraries

• Every distributed system in the world needs to marshall!

• Thus – lots of marshalling libraries around ☺

– Do NOT code it yourself!!! You will end reimplementing one!

• String json = ”{ name: ”+ object.name+ ”}…

• JSON I have used many libraries

– Json-simple

– Jackson JSON

– Gson

CS@AU Henrik Bærbak Christensen 49

Gson

• Gson is the most compact I have used

– (But have had trouble with ‘date’ objects that marshall incorrectly!)

• It allows easy marshalling of record types

– Also known as

• PODO: Plain Old Data Objects,

• DTO: Data Transfer Object

• Record type (Pascal) / ‘struct’ (C) / record (java 17+)

– No complex methods, only set/get methods with no side effects

– Must have a default constructor

• That is: A pure data object, just storing information

– Akin a ‘resource’ in REST terminology, by the way

CS@AU Henrik Bærbak Christensen 50

Example:

• toJson(obj)

– Marshall

• fromJson(str, type.class)

– Demarshall, using given type

CS@AU Henrik Bærbak Christensen 51

Proxy

You know that one…

Example

• TeleMedProxy

CS@AU Henrik Bærbak Christensen 53

Client Server

Network
call

Note

• The algorithm of all methods in the proxy will be the same

– Marshall parameters, send, await reply, demarshall, return

• Can be auto generated – this is what RMI does

• We will hand-code it, because

– … it is the learning goal of this course ☺

– And it actually makes sense if you want very strict control of

architectural attributes like performance and availability

• And, if you do not, you are in trouble ☺

– Find more info in

CS@AU Henrik Bærbak Christensen 54

Why QAs

• Why? One Example:

• You have a lot of accessor methods, and a single mutator

– i.e. state only changes when mutator is invoked!

• RMI will autogenerate proxy (send/receive) for every

method

• That is, every accessor method call will generate network

traffic!

• Performance Antipattern: Chatty interface

• Pattern: Chunky interface

– All accessors just return cached state in the proxy instance itself!

CS@AU Henrik Bærbak Christensen 55

Name Services

Finding the Object to Talk to

Coupling Proxy and ‘server-side’

• Ok a Proxy “plays the client side role” of the real object

on the server side…

• But what if there are many ‘RealSubjects’?

– Like 10.000 instances of ‘Customer’ on the server?

CS@AU Henrik Bærbak Christensen 57

Client Server

Network
call

Server

Now What?

• In distributed computing this is tricky

– How to refer to a specific memory address in a remote server???

CS@AU Henrik Bærbak Christensen 58

0100h

0102h

0104h

0106h

custAProxy = ????

Client

?

custBProxy = ????
?

DNS name

This Week (only!)

• We will solve this issue (partly) next week, but for now…

– We just have one object on the server making it easier

• If we know the IP of the machine – we can access that object ☺

CS@AU Henrik Bærbak Christensen 59

0100h

0102h

0104h

0106h

teleMed = new
Proxy()

Client

The only object!

Summary

• The Broker Pattern combines

– Request/Reply protocol

– Marshalling

– Proxy pattern

– Naming Systems (next week)

• … to produce something that (on happy days)

• Allows an Object Oriented Programming model to apply

to distributed computing

CS@AU Henrik Bærbak Christensen 60

	Slide 1: Software Engineering and Architecture
	Slide 2: Intro…
	Slide 3: Distributed System
	Slide 4: Limitations
	Slide 5: And Limiting ourselves
	Slide 6: Client-Server
	Slide 7: Client-Server
	Slide 8: Or Visually
	Slide 9: Or Visually
	Slide 10: Or Visually
	Slide 11: One Word of Caution
	Slide 12: The History
	Slide 13: Grounding Example
	Slide 14: Case
	Slide 15: Vision
	Slide 16: Story 1
	Slide 17: Story 2
	Slide 18: (What is XDS)
	Slide 19: (What is HL7)
	Slide 20: TeleMed Design
	Slide 21: Demo
	Slide 22: Source Code
	Slide 23: Source Code
	Slide 24: Issues in Distribution
	Slide 25: Challenge
	Slide 26: Challenge
	Slide 27: Issues (at least!)
	Slide 28: Performance
	Slide 29: Elements of a Solution
	Slide 30: Elements Overview
	Slide 31: Request/Reply
	Slide 32: The Protocol
	Slide 33: Pairing Send/Receives
	Slide 34: Marshalling
	Slide 35: Definitions
	Slide 36: Two Basic Approaches
	Slide 37: And we need more
	Slide 38: Note
	Slide 39: Parameter Passing
	Slide 40: At Machine Level
	Slide 41: At Machine Level
	Slide 42: … Which is why…
	Slide 43: … And Which is Why…
	Slide 44: Java References
	Slide 45: In C and C++ (and Go)
	Slide 46: In Our Broker
	Slide 47: Consequences
	Slide 48: JSON Libraries
	Slide 49: Libraries
	Slide 50: Gson
	Slide 51: Example:
	Slide 52: Proxy
	Slide 53: Example
	Slide 54: Note
	Slide 55: Why QAs
	Slide 56: Name Services
	Slide 57: Coupling Proxy and ‘server-side’
	Slide 58: Now What?
	Slide 59: This Week (only!)
	Slide 60: Summary

