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 Distributed Computing is the last major SWEA topic
— Our perspective: Programming and Pattern Perspective

Flexible, Reliable,

: . - Distributed Software
Agile Development
n ition

— Confusion: Looks much the the first...

— Get it from https://leanpub.com/frds
« For the price of a box of beer...

— Yes, | like pyramids !

Henrik Beerbak Christensen

CS@AU Henrik Baerbak Christensen
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Detfinition: Distributed System

A distributed system is one in which components located at networked
computers communicate and coordinate their actions only by passing
messages. (Coulouris, Dollimore, Kindberg, and Blair 2012)

¢ Why?
— To speed up computation
» Google search, machine learning, and (a few) other cases

— To share information
« Everything else! (Slight exaggeration!)

CS@AU Henrik Baerbak Christensen 3
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« Distributed systems and distributed computing is a...

... vast subject area !!!

 \We will limit ourselves to a "niche”

Client-server Architectures using Remote Method Invocation

... this niche covers a lot of systems in practice ©

CS@AU Henrik Beerbak Christensen 4
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« Eventhatis

... difficult to make!!!

e ... because it must be
— Highly available, performant, and secure

« And that is topics in advanced software architecture

We will only consider happy path:
All computers and networks are working;

Few users and none that are malicious

CS@AU Henrik Beerbak Christensen 5
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 You all know ‘client-server’ architectures, but...

Client-server architecture Two components need to communicate,
and they are independent of each other, even running in different
processes or being distributed in different machines. The two com-
ponents are not equal peers communicating with each other, but
one of them is initiating the communication, asking for a service
that the other provides. Furthermore, multiple components might
request the same service provided by a single component. Thus, the

component providing a service must be able to cope with numerous
requests at any time, i.e. the component must scale well. On the
other hand, the requesting components using one and the same
service might deal differently with the results. This asymmetry
between the components should be reflected in the architecture for
the optimization of quality attributes such as performance, shared
use of resources, and memory consumption.

Reactive

Active

The CLIENT-SERVER pattern distinguishes two kinds of compo-
nents: clients and servers. The client requests information or ser-
vices from a server. To do so it needs to know how to access the
server, that is, it requires an ID or an address of the server and of
course the server’s interface. The server responds to the requests
of the client, and processes each client request on its own. It does
not know about the ID or address of the client before the interaction

takes place. Clients are optimized for their application task, whereas
servers are optimized for serving multiple clients3. Ala: web browsing, facebook, ...

3Paris Avgeriou and Uwe Zdun, “Architectural patterns revisited - a pattern language”, In 10th European ngap 6
Conference on Pattern Lanquages of Programs (EuroPlop), Irsee, 2005.
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* One big difference from all you have been doing up until
now...
— You have been building “programs” = all behavior in one ‘unit’

« A client-server system consists ofw

« The client program: The one the user runs
— Communicating with...
 The server program: Well hidden in some server room

— WarpTalk — the server is provided by Clemens

CS@AU Henrik Baerbak Christensen 7



/v Or Visually

AARHUS UNIVERSITET

ALFEN #3
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PS)

game.playCard(Findus, ff);

Client program

game.playCard(Findus, ff);

Henrik Baerbak Christensen Server program
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/v Or Visually
<

game.playCard(Findus, c) {
result =
sendToServer(“Findus tries to play ff”);
return result;

Await incoming command, c {
if (c == “Findus tries to play ff”) {
r = game.playCard(Findus,ff);
e neeh.. send ‘r’ back to client;
} else ...

Client program

Henrik Baerbak Christensen Server program
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game.playCz
result =
sendToSe
return res

}

hotstonec

Henrik Baerbak Christensen

Or Visually

play ff”) {
dus,ff);

Server program




/v One Word of Caution
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 We will happily disregard security !!!

e Security Is so important that we ignore it!
— Because the real security techniques is one big set of hard
bindings and strong coupling

* You need certificates that tie you to a specific DNS name
— Certificate stores, key pair generation, trust chains, yaga yaga

* Quite a lot of extra coding and makes experiments difficult

 Morale: Add that stuff for real production usage !
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* Birrell and Nelson, 1984:

The History

— “allow calling procedure on remote machines”

— A calls procedure f on B means

A suspends, information on f is transmitted to B
B executes the f procedure

B sends the result back to A

Aresumes
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Grounding Example

TeleMed

Inspired by Net4Care:
https://baerbak.cs.au.dk/net4care/
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* Demographic challenges
— 2009: 70% of public health expenditure goes to chronic diseases
— 2040: 100% more elderly
« Geographical challenges
— Larger, fewer hospitals
— Fewer general practitioners
 Leads to a need for telemedical solutions

— ICT-supported healthcare services where some of the people
participating in service delivery are not co-located with the
receiver of the service
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* Vision R
— Replace out-patient visits by §
measurements made by ]

patients in their home

— Move data from home to
regional/national storage so all
health care personal can view them...

 Motivation

— Reduce out-patient visits
« Better quality of life
» Cost savings
» Better traceability and visibility

CS@AU Henrik Baerbak Christensen 15
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2) BP measurement stored
as HL7 document

‘ ﬂ - 7L -
Knud had a ’W =
heart attack NS
National XDS
Tele Medicine
Server

Inger has high
1) Inger measures her BP - Hespityl Clplgas
o . General Practitioneer
using her TeleMed terminal

Blood pressure
CS@AU Henrik Beerbak Christensen 16
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2) Query for all BP documents
associated with Inger

Knud had a W(
heart attack

Inger has high
Blood pressure

National XDS
Tele Medicine

Server

Hospital Clinician

1) GP queries last month’s BP [ athsalitedtad
measurements for Inger using

web browser

CS@AU Henrik Beerbak Christensen 17
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* Cross-Enterprise Document Sharing
— One Regqistry + Multiple Repositories
— Repository: Stores clinical documents

 (id,document) pairs

— Registry: Stores metadata with document id
« Metadata (cpr, timeinterval, physician, measurement type,...)
 |d of associate document and its repository

e Think
— Registry = Google (index but no data)
— Repository = Webserver (data but no index)

H B Christensen 18
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Information storage and exchange.
— Version 3 loves XML!

 Qur version:

http://localhostd567/bp/pidd1 % =4 Ly

localhost:45

TeleMed

Observations for pid01

There are 1 observations.

bp/pid01 c Search

Real version:

<ClinicalDocumsnt>
<effectiveTime value="20160303121148"/>
<patient>
<id extension="pid01"/>
«</patient>
<component>
<observation>
<code code

Tk

"MSCE8019" displayName

e

</ocbservation>
<observation>

<value unit="mm(Hg)}" wvalue="65.0"/>
</observation>
«/component>
</ClinicalDocument>

P T T WL ST

B

B e =

e

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

"Systolisk BT"/>
<value unit="mm(Hg)" value="115.0"/>

<code code="MSCE8020" displayName="Diastolisk BT"/>

tensen

(What is HL7)

« HLY is a standard (complex!) for clinical

Heac

Patient informa

“Author’, hers interprated as the clincia
authorized/prescribed the device as par
treatment/monitoring

Custodian, the organization that
has HL7 "stewardship” which |
translate as they who are legally
responsible for storage stc.

Documentation of the hardware
have only the Device ID here and
guessed some and left out the re

One measurame
each measurenm
contained ina ‘e
which ‘code’ enc
is and "value’ en
measurement it:

b1 0 otttz

UIPAC coded

5[8.01° diplar N ame= Sysalisi:

63515561 1 diplay N am:
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* Roles involved

Client side (local)

HomeClient

TeleMed Design

server

Server side (remote)

client

*

create——

TeleObservation

TeleMed

« TeleObservation: Represents a measurement

« HomeClient: Responsible for measuring + uploading

+ TeleMed: Responsible for storage and queries
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1 .4 [INFO] org se 3

: 8:49.4 [INFO] .
d Start a. Server ) - el csdev@mi broker 89x18
1 4T0 .4 G @ [INFO] or = = —he
8 e 5 df ev@mi: S gradle homeHttp -Psys=127 -Pdia=77 -Pid=pid17

- .514 [INFO] c ing a Gradle Daemon, 1 bu Daemon 1d not be r --status for details

18- 14 .51 [INFO]

— gradle serverHttp [ sy Rn——

© [INFO] or HomeClient d to do operation store for patient pidi7

S _HomeClient mpleted
.53 NFO] «
EXECUTING [21s]

erverhttp Gradle features were used in this build, making it incompatible with Gradle

ation warnings
mmand_line interface.

BUILD SUCCESSFUL im 3

« Send an obs. |

—_ gradle homthtp . localhost:456?/bp/pid‘l? x |+

— ... -Psys=126 -Pdia=70 ;le;:l 210 loahostasrolory )
-Pid=pid17

Observations for pid17

There are 1 observations.

lone="no"7?>

« GP review In browser
— http://localhost:4567/bp/pid17 RSEEWE:

astolic BP"/>
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broker

Clone

-
[ ] I h e S O u rce CO d e I S O e n Here's where you'll find this repository's source files. To give your users an idea of what they'll find here, add a
description to your repasitory.

source at b

b/

— https://bitbucket.org/henrikbaerb ...
ak/broker/ - oo

B demo-rest
— Download or Fork I
B cemo2
BB pastebin
* You will want its code to .
learn the Broker pattern... > e
— But your HotStone mandatory B grden
only needs to fetch the Broker | ™
library using gradle... B e

« As with MiniDraw library

CS@AU Henrik Baerbak Christensen

Size

616

11.25 KB

7.62 KB

697 B

5.17 KB

2.21 KB

707 B

284 B

Last commit

2018-06-12

2018-06-12

2018-06-12

2018-06-15

2018-09-18

2018-04-05

2018-05-01

2018-09-18

2018-04-09

2018-04-26

2018-04-09

2018-05-08

2018-06-12

Message

Fix #8 and #6. Marshalling format version can be...
Fix #8 and #6. Marshalling format version can be...
Updated version and docs.

Updated manual test case to allow a ‘'move’ oper...
Added Pastebin demo

Broken snapshot. Added frs.broker library from R...
Release Candidate 1.2. Updated readme, license
Added Pastebin demo

Added Apache licence to all files

Made demo programs.

Cleaning up old javadoc comments with refs to F..
Added demo-rest; imported old REST/CRUD de...

Updated version and docs.

22
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* SprrOJeCtS broker
— Broker: Core roles + default Y s

implementation of some \ -’

— TeleMed: The TeleMed code
including tests of broker code\

Henrik Baerbak Christensen

gamelobby-rest
gamelobby
pastebin
telemed-rest
telemed

.gitignore

— Others: We will return to these
next...

LICENSE
README.md

build.gradle

A B

gradlew

CS@AU Henrik Baerbak Christensen

Size

618

11.25 KB

8.63 KB

697 B

517 KB

Last commit

2019-10-18

20 hours ago

2019-08-07

2019-04-30

2019-05-02

2019-10-18

2018-04-05

2018-05-01

20 hours ago

2018-04-09

2019-10-18

Clone

Message

Updated IPC test cases to have more...
Removed debug output. Updated RE...
Fixed magic constant in the marshalli...
Added note on pastebin design.

Minor code cleanup

Updated IPC test cases to have more...
Broken snapshot, Added frs.broker lib...
Release Candidate 1.2, Updated read...
Removed debug output. Updated RE...
Added Apache licence to all files

Updated IPC test cases to have more...

23
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Issues In Distribution

Why is it hard?
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 How guys like me like to code:

Definition: Object-orientation (Responsibility)
An object-oriented program is structured as a community of interacting
agents called objects. Each object has a role to play. Each object provides

a service or performs an action that is used by other members of the
community:.

« Which is then something like this on the client:

public void makeMeasurement() |
TeleObservation teleObs;
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

}

CS@AU Henrik Baerbak Christensen 25
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 However - networks only support two asynch functions!

void send (Object serverAddress, byte[] message);
byte[] receive ();

« Which is not exactly the same as

public void makeMeasurement() |{
TeleObservation teleObs:
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

CS@AU Henrik Baerbak Christensen 26
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public void makeMeasurement() {

Send/recelve IS a tOO IOW Ievel TeleObservation teleObs;

teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);

programming mOdeI String teleObsld = server.processAndStore(teleOlI)s);
}

Send() does not walit for a reply from server (Asynch)

Reference to object on my machine does not make
sense on remote computer (memory address)

Networks does not transfer objects, just bits Security QA
Networks are slow | Availability QA
Networks and Remote computers may fail EEEEER=Eer
Networks are insecure, others may pick up our data

Architectural Issues: Not SWEA stuff. (Follow my EVU course once you are in a job ©)

CS@AU Henrik Baerbak Christensen 27
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« Just how much slower is a network call compared to a
local in-JVM memory call?

Configuration Average time  Max time (ms) Factor

(ms)
Local call 1,796 3,360 1.0
Localhost 9,731 12,806 5.4
Docker 17,091 35,873 Q.
On switch 22,817 20,427 12.7
Frankurt 494,966 513,411

« Imagine that your next trip to the supermarket for a soda
was 275 times slower???

— 10 minutes walk versus 46,8 hours walking ©

CS@AU Henrik Baerbak Christensen 28
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* On the ‘happy path’, we need to

— Make the HomeClient invoke a synchronous method call on a
remote TeleMed object using only network send/receive

— Keep our OO programming model: telemed.processAndStore(to);
« That is invoke specific method on remote object

— Convert TeleObservation object into bits to send it, and convert it
back again

— Locate the remote TeleMed object
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« Solutions are
— Request/Reply Protocol
« Simulate synchronous call (solves (partly) concurrency issue)
— Marshalling
» Packing objects into bits and back (solves data issue)
— Proxy Pattern
« Simulate method call on client (solves programming model issue)
— Naming Systems
« Use a registry/name service (solves remote location issue)

« Bundled together these constitute
— The Broker pattern
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Request/Reply
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The Protocol
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« Known from every WWW access you have ever made...

Definition: Request-Reply Protocol

The request-reply protocol simulate a synchroneous call between client
and a server objects by a pairwise exchange of messages, one forming the
request message from client to server, and the second forming the reply
message from the server back to the client. The client sends the request
message, and waits/blocks until the reply message has been received.

— Firefox will block until a web page has been received

CS@AU

Henrik Baerbak Christensen
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Client does

— Send() and
receive

Server does

— Receive() and
send()

Roles

I
|
|
|
send
J_|

Pairing Send/Receives

.server

receive

|
receive

handle Request

send

— Client is active — initiate action
— Server is reactive — awaits actions and then reacts
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CS@AU

Marshalling

Or Serialization

Henrik Baerbak Christensen
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Marshalling is the process of taking a collection of structured data
items and assembling them into a byte array suitable for transmis-
sion in a network message.

Unmarshalling is the process of disassembling a byte array received
in a network message to produce the equivalent collection of struc-
tured data items.

CS@AU Henrik Baerbak Christensen
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JSON blood pressure

« There are two approaches
— Binary formats ‘

patientld: “'251248-1234"",
° i systolic: 128.0,
Google ProtoBuf, proprietary e, G

}

— Textual formats
« XML, JSON, proprietary

« Exercise: Costs? Benefits?

CS@AU Henrik Baerbak Christensen 36
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« As we can send only bits, we also need to marshal
Information about the method and object id!

{

methodName : "processAndStore_method"”,
parameters : |
{
patientld: 7251248 -1234"",
systolic: 128.0,
diastolic: 76.0
}

]
|

CS@AU Henrik Baerbak Christensen 37
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« Marshalling is fine for atomic datatypes (int, double, char,
array, ...) but...

« What about object references?
— inventory.addCustomer(c) where c is Customer object?

— Issue: the ‘c’is an object reference but how to a use ‘c’ on the
client if the object is located on the server?

« Actually, it sort of depends on parameter passing...
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 Pass by reference
— The Java style for all objects
— You do not get the Customer value, you get a reference to it!
— public void addCustomer(Customer c);

 Pass by value
— Java does this for primitive types, like int and double
— You do get the value itself
— public void deposit(double amount);



eV At Machine Level
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« All values are stored in memory on chunks of 64 bits
— int value = 42; CO10 e
— |ntf|sh=77; | c013 =
— String a = "Hey’; co1l4

 Internally, any variable/ colé
object reference is a co19
reference/pointer = a COlB

memory address.

 In C and C++ you can get that memory address, using &
— value == 42 but &value = C010; and &fish = C013

CS@AU Henrik Baerbak Christensen 40
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« All values are stored in memory on chunks of 64 bits

— String a = "HeJ";
: : co10 42

* Anobject reference in Java  p33 77
IS not the “Hej” characters but ¢p14
the memory address of it! cole
— a=C019 (reference to string) €019

COl1B

« Stringa=null; //C014 =0L

* a = new String(“Hej"); // allocate space for string, put
address of that space into C014

CS@AU Henrik Baerbak Christensen 41
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* You are taught to use .equals() instead of ==

— If(x==7) correct — value equality
— If (s == "Hey") iIncorrect — reference equality
— If (s.equals(“Hej") correct — values match

* (Most of the time ‘s == “Hej” actually works in Java,
because the compiler treats Strings in an intelligent way
(which makes it confusing, sigh ®))
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* You in HotStone should compare cards using reference
equality
— If (card1 == card?2)

— Because if you do
— If (cardl.equals(card2))

— Then you get it wrong! Why?
« Hint: You may have two Uno cards on the hand/field, right.
— Are they the same card?
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 If you create a class, and do not override ‘toString()’ you
get a glimpse of that memory address

— The JVM does some trickery so it is not a clean/real memory
address, but anyway...

public class PrintAddr {
public static void main(String[] args) {
System.out.println("=== Java References ===");
Point p = new Point();
System.out.println("Value of p is: " + p );
}

private static @1-;1__ Point { public int x; public int y; }

csdev@m51:~/tmp$ java PrintAddr
Java References ===

Value of p 1is:

CS@AU Henrik Baerbak Christensen 44
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+ In C and C++ you can actually choose...

void fooByValue(int value) { .=
void fooByRef(intx value) { ..«

— If the first call adds 10 to value, what happens to ‘value’ at the call
site?
* intv =7; fooByValue(v); print(v);

— If the second call adds 10 to value, what happens to value at the
call site?
* intv =7; fooByRef(&v); print(v);

CS@AU Henrik Baerbak Christensen 45
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« The semantics change in our Broker Pattern

— localObject.say(’Hello") localObject pass by reference

— remoteObject.say("Hello”) remoteQObject pass by value

_ Why?

Our Broker only supports pass by value!

e EXxercise:

(next week we introduce a trick to simulate pass by ref)

CS@AU Henrik Beerbak Christensen 46
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* If my client sends an object — pass-by-value
— Person { String name; int age}  with value { “Mikkel”, 29 }

* And the server receives this object and then change
— Person { String name; int age}  to value { “Magnus”, 26 }

« Then what happens in the client’s person object ?7??
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JSON Libraries
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« Every distributed system in the world needs to marshall!

* Thus - lots of marshalling libraries around ©
— Do NOT code it yourself!!! You will end reimplementing one!

« JSON | have used many libraries
— Json-simple
— Jackson JSON
— Gson
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* Gson is the most compact | have used
— (But have had trouble with ‘date’ objects that marshall incorrectly!)

It allows easy marshalling of record types

— Also known as
« PODO: Plain Old Data Objects,
« DTO: Data Transfer Object

* Record type (Pascal) / ‘struct’ (C) / record (java 17+)
— No complex methods, only set/get methods with no side effects
— Must have a default constructor

« That is: A pure data object, just storing information
— Akin a ‘resource’ in REST terminology, by the way
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@Test public void shouldMarshallTeleObservation() { {
// This is a learning test, showing Gson marshalling "patientId": "251248-0000",
Gson gson = new Gson(); "systolic™: {
String json = gson.toJlson(to); "yalue™: 120,
: ” : G 4 "'IJ.l'.I.it ": "thg} "i'
assertThat(json, containsString( substring: "\"patientId\":\"251248-0000\"")); mecode™: "MSCEE019™,
"displayName": "Systolic BE"™

TeleObservation copy son.fromJson(json, TeleObservation.class); y
assertThat( copy. getPafgm'l'l_l'HJ'HWmn , 15(HelperMethods "L ey g

assertThat( copy.getSystolic().getValue(), is( value: 120.0)); "diastolic®:

assertThat( copy.getDiastolic().getValue(), is( value: 70.0)); ::va‘}uf":"m‘ "
assertThat( copy.getSystolic().getUnit(), is( value: "mm(Hg)") ); unit": "mm(Hg)}",
} "code": "MSCE8020",
"displayName™": "Diastolic BE"
Fe
"rime": {
"date™: {
: " ": 2017,
« toJson(obj) honthe: 6,
"day™: 30
Marshall SO
ime": {
"hour™: 11,
e fromJson(str, type.class) minuver: 7,
second™: 26,
. . "nanao": 0
Demarshall, using given type )

CS@AU Henrik Baerbak Christensen 51
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Proxy

You know that one...
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« TeleMedProxy

CS@AU

public String processAndStore(TeleObservation teleObs) |

byte[] requestMessage = marshall(teleObs);
send (server , requestMessage);

byte[] replyMessage = receive ();

String id = demarshall(replyMessage);
return id;

Structure:
«interface»
Client Subject
operation()
realSubject.operation()% 7 Y
re ~
: .
Proxy RealSubject
‘ b operation() l | operation()

i

Henrik Baerbak Christensen

Example
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« The algorithm of all methods in the proxy will be the same
— Marshall parameters, send, await reply, demarshall, return

« Can be auto generated — this is what RMI does

* We will hand-code it, because
— ... it is the learning goal of this course ©

— And it actually makes sense if you want very strict control of
architectural attributes like performance and availability

« And, if you do not, you are in trouble &
— Find more info in

Teaching Distributed Programming — Revisiting the Broker
Pattern




/v why QAs

AARHUS UNIVERSITET

Why? One Example:

You have a lot of accessor methods, and a single mutator
— I.e. state only changes when mutator is invoked!

RMI will autogenerate proxy (send/receive) for every
method

That Is, every accessor method call will generate network
traffic!

Performance Antipattern: Chatty interface

Pattern: Chunky interface
— All accessors just return cached state in the proxy instance itself!
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Name Services

Finding the Object to Talk to
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« Ok a Proxy “plays the client side role” of the real object

on the server side...

Structure:

«interface»
Subject

Client

operation()

realSubject.operation()%

L 4 N 5 __j

Proxy RealSubject

o operation() operation()

« But what if there are many ‘RealSubjects’?
— Like 10.000 instances of ‘Customer’ on the server?
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 In distributed computing this is tricky
— How to refer to a specific memory address in a remote server???

Server

custAProxy = ?7?7??

custBProxy = ??7?7?

CS@AU Henrik Beerbak Christensen 58



/v This Week (only!)

AARHUS UNIVERSITET

« We will solve this issue (partly) next week, but for now...

— We just have one object on the server making it easier
* If we know the IP of the machine — we can access that object ©

Client DNS name

teleMed = new 0100h
Proxy()

0102h

The only object! 4h

0106h
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* The Broker Pattern combines
— Request/Reply protocol
— Marshalling
— Proxy pattern
— Naming Systems (next week)

« ... to produce something that (on happy days)

« Allows an Object Oriented Programming model to apply
to distributed computing
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