/v

AARHUS UNIVERSITET

Software Engineering
and Architecture

Distributed Systems
An Introduction

eV Intro...

AARHUS UNIVERSITET

 Distributed Computing is the last major SWEA topic
— Our perspective: Programming and Pattern Perspective

Flexible, Reliable,

: . - Distributed Software
Agile Development
n ition

— Confusion: Looks much the the first...

— Get it from https://leanpub.com/frds
« For the price of a box of beer...

— Yes, | like pyramids !

Henrik Beerbak Christensen

CS@AU Henrik Baerbak Christensen

/v Distributed System

AARHUS UNIVERSITET

Detfinition: Distributed System

A distributed system is one in which components located at networked
computers communicate and coordinate their actions only by passing
messages. (Coulouris, Dollimore, Kindberg, and Blair 2012)

¢ Why?
— To speed up computation
» Google search, machine learning, and (a few) other cases

— To share information
« Everything else! (Slight exaggeration!)

CS@AU Henrik Baerbak Christensen 3

/v Limitations

AARHUS UNIVERSITET
« Distributed systems and distributed computing is a...

... vast subject area !!!

 \We will limit ourselves to a "niche”

Client-server Architectures using Remote Method Invocation

... this niche covers a lot of systems in practice ©

CS@AU Henrik Beerbak Christensen 4

/v And Limiting ourselves

AARHUS UNIVERSITET
« Eventhatis

... difficult to make!!!

e ... because it must be
— Highly available, performant, and secure

« And that is topics in advanced software architecture

We will only consider happy path:
All computers and networks are working;

Few users and none that are malicious

CS@AU Henrik Beerbak Christensen 5

/v Client-Server

AARHUS UNIVERSITET
 You all know ‘client-server’ architectures, but...

Client-server architecture Two components need to communicate,
and they are independent of each other, even running in different
processes or being distributed in different machines. The two com-
ponents are not equal peers communicating with each other, but
one of them is initiating the communication, asking for a service
that the other provides. Furthermore, multiple components might
request the same service provided by a single component. Thus, the

component providing a service must be able to cope with numerous
requests at any time, i.e. the component must scale well. On the
other hand, the requesting components using one and the same
service might deal differently with the results. This asymmetry
between the components should be reflected in the architecture for
the optimization of quality attributes such as performance, shared
use of resources, and memory consumption.

Reactive

Active

The CLIENT-SERVER pattern distinguishes two kinds of compo-
nents: clients and servers. The client requests information or ser-
vices from a server. To do so it needs to know how to access the
server, that is, it requires an ID or an address of the server and of
course the server’s interface. The server responds to the requests
of the client, and processes each client request on its own. It does
not know about the ID or address of the client before the interaction

takes place. Clients are optimized for their application task, whereas
servers are optimized for serving multiple clients3. Ala: web browsing, facebook, ...

3Paris Avgeriou and Uwe Zdun, “Architectural patterns revisited - a pattern language”, In 10th European ngap 6
Conference on Pattern Lanquages of Programs (EuroPlop), Irsee, 2005.

/v Client-Server

AARHUS UNIVERSITET

* One big difference from all you have been doing up until
now...
— You have been building “programs” = all behavior in one ‘unit’

« A client-server system consists ofw

« The client program: The one the user runs
— Communicating with...
 The server program: Well hidden in some server room

— WarpTalk — the server is provided by Clemens

CS@AU Henrik Baerbak Christensen 7

/v Or Visually

AARHUS UNIVERSITET

ALFEN #3
LS

XYy
ey o4)
PRI, 4

v

PS)

game.playCard(Findus, ff);

Client program

game.playCard(Findus, ff);

Henrik Baerbak Christensen Server program

AARHUS UNIVERSITET

/v Or Visually
<

game.playCard(Findus, c) {
result =
sendToServer(“Findus tries to play ff”);
return result;

Await incoming command, c {
if (c == “Findus tries to play ff”) {
r = game.playCard(Findus,ff);
e neeh.. send ‘r’ back to client;
} else ...

Client program

Henrik Baerbak Christensen Server program

/v

AARHUS UNIVERSITET

game.playCz
result =
sendToSe
return res

}

hotstonec

Henrik Baerbak Christensen

Or Visually

play ff”) {
dus,ff);

Server program

/v One Word of Caution

AARHUS UNIVERSITET
 We will happily disregard security !!!

e Security Is so important that we ignore it!
— Because the real security techniques is one big set of hard
bindings and strong coupling

* You need certificates that tie you to a specific DNS name
— Certificate stores, key pair generation, trust chains, yaga yaga

* Quite a lot of extra coding and makes experiments difficult

 Morale: Add that stuff for real production usage !

/v

AARHUS UNIVERSITET
* Birrell and Nelson, 1984:

The History

— “allow calling procedure on remote machines”

— A calls procedure f on B means

A suspends, information on f is transmitted to B
B executes the f procedure

B sends the result back to A

Aresumes

/v

AARHUS UNIVERSITET

Grounding Example

TeleMed

Inspired by Net4Care:
https://baerbak.cs.au.dk/net4care/

ot Case
AARHUS UNIVERSITET
* Demographic challenges
— 2009: 70% of public health expenditure goes to chronic diseases
— 2040: 100% more elderly
« Geographical challenges
— Larger, fewer hospitals
— Fewer general practitioners
 Leads to a need for telemedical solutions

— ICT-supported healthcare services where some of the people
participating in service delivery are not co-located with the
receiver of the service

VeV Vision

AARHUS UNIVERSITET R—
* Vision R
— Replace out-patient visits by §
measurements made by]

patients in their home

— Move data from home to
regional/national storage so all
health care personal can view them...

 Motivation

— Reduce out-patient visits
« Better quality of life
» Cost savings
» Better traceability and visibility

CS@AU Henrik Baerbak Christensen 15

/v Story 1

AARHUS UNIVERSITET
2) BP measurement stored
as HL7 document

‘ ﬂ - 7L -
Knud had a ’W =
heart attack NS
National XDS
Tele Medicine
Server

Inger has high
1) Inger measures her BP - Hespityl Clplgas
o . General Practitioneer
using her TeleMed terminal

Blood pressure
CS@AU Henrik Beerbak Christensen 16

/v Story 2

AARHUS UNIVERSITET

2) Query for all BP documents
associated with Inger

Knud had a W(
heart attack

Inger has high
Blood pressure

National XDS
Tele Medicine

Server

Hospital Clinician

1) GP queries last month’s BP [athsalitedtad
measurements for Inger using

web browser

CS@AU Henrik Beerbak Christensen 17

/v (What is XDS)

AARHUS UNIVERSITET
* Cross-Enterprise Document Sharing
— One Regqistry + Multiple Repositories
— Repository: Stores clinical documents

 (id,document) pairs

— Registry: Stores metadata with document id
« Metadata (cpr, timeinterval, physician, measurement type,...)
 |d of associate document and its repository

e Think
— Registry = Google (index but no data)
— Repository = Webserver (data but no index)

H B Christensen 18

\ 4
AARHUS UNIVERSITET

Information storage and exchange.
— Version 3 loves XML!

 Qur version:

http://localhostd567/bp/pidd1 % =4 Ly

localhost:45

TeleMed

Observations for pid01

There are 1 observations.

bp/pid01 c Search

Real version:

<ClinicalDocumsnt>
<effectiveTime value="20160303121148"/>
<patient>
<id extension="pid01"/>
«</patient>
<component>
<observation>
<code code

Tk

"MSCE8019" displayName

e

</ocbservation>
<observation>

<value unit="mm(Hg)}" wvalue="65.0"/>
</observation>
«/component>
</ClinicalDocument>

P T T WL ST

B

B e =

e

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

"Systolisk BT"/>
<value unit="mm(Hg)" value="115.0"/>

<code code="MSCE8020" displayName="Diastolisk BT"/>

tensen

(What is HL7)

« HLY is a standard (complex!) for clinical

Heac

Patient informa

“Author’, hers interprated as the clincia
authorized/prescribed the device as par
treatment/monitoring

Custodian, the organization that
has HL7 "stewardship” which |
translate as they who are legally
responsible for storage stc.

Documentation of the hardware
have only the Device ID here and
guessed some and left out the re

One measurame
each measurenm
contained ina ‘e
which ‘code’ enc
is and "value’ en
measurement it:

b1 0 otttz

UIPAC coded

5[8.01° diplar N ame= Sysalisi:

63515561 1 diplay N am:

/v

AARHUS UNIVERSITET

* Roles involved

Client side (local)

HomeClient

TeleMed Design

server

Server side (remote)

client

*

create——

TeleObservation

TeleMed

« TeleObservation: Represents a measurement

« HomeClient: Responsible for measuring + uploading

+ TeleMed: Responsible for storage and queries

\ 4 Demo

AARHUS UNIVERSITET e oo

1 .4 [INFO] org se 3

: 8:49.4 [INFO] .
d Start a. Server) - el csdev@mi broker 89x18
1 4T0 .4 G @ [INFO] or = = —he
8 e 5 df ev@mi: S gradle homeHttp -Psys=127 -Pdia=77 -Pid=pid17

- .514 [INFO] c ing a Gradle Daemon, 1 bu Daemon 1d not be r --status for details

18- 14 .51 [INFO]

— gradle serverHttp [sy Rn——

© [INFO] or HomeClient d to do operation store for patient pidi7

S _HomeClient mpleted
.53 NFO] «
EXECUTING [21s]

erverhttp Gradle features were used in this build, making it incompatible with Gradle

ation warnings
mmand_line interface.

BUILD SUCCESSFUL im 3

« Send an obs. |

—_ gradle homthtp . localhost:456?/bp/pid‘l? x |+

— ... -Psys=126 -Pdia=70 ;le;:l 210 loahostasrolory)
-Pid=pid17

Observations for pid17

There are 1 observations.

lone="no"7?>

« GP review In browser
— http://localhost:4567/bp/pid17 RSEEWE:

astolic BP"/>

VeV Source Code

AARHUS UNIVERSITET

broker

Clone

-
[] I h e S O u rce CO d e I S O e n Here's where you'll find this repository's source files. To give your users an idea of what they'll find here, add a
description to your repasitory.

source at b

b/

— https://bitbucket.org/henrikbaerb ...
ak/broker/ - oo

B demo-rest
— Download or Fork I
B cemo2
BB pastebin
* You will want its code to .
learn the Broker pattern... > e
— But your HotStone mandatory B grden
only needs to fetch the Broker | ™
library using gradle... B e

« As with MiniDraw library

CS@AU Henrik Baerbak Christensen

Size

616

11.25 KB

7.62 KB

697 B

5.17 KB

2.21 KB

707 B

284 B

Last commit

2018-06-12

2018-06-12

2018-06-12

2018-06-15

2018-09-18

2018-04-05

2018-05-01

2018-09-18

2018-04-09

2018-04-26

2018-04-09

2018-05-08

2018-06-12

Message

Fix #8 and #6. Marshalling format version can be...
Fix #8 and #6. Marshalling format version can be...
Updated version and docs.

Updated manual test case to allow a ‘'move’ oper...
Added Pastebin demo

Broken snapshot. Added frs.broker library from R...
Release Candidate 1.2. Updated readme, license
Added Pastebin demo

Added Apache licence to all files

Made demo programs.

Cleaning up old javadoc comments with refs to F..
Added demo-rest; imported old REST/CRUD de...

Updated version and docs.

22

https://bitbucket.org/henrikbaerbak/broker/
https://bitbucket.org/henrikbaerbak/broker/

VeV Source Code

AARHUS UNIVERSITET

* SprrOJeCtS broker
— Broker: Core roles + default Y s

implementation of some \ -’

— TeleMed: The TeleMed code
including tests of broker code\

Henrik Baerbak Christensen

gamelobby-rest
gamelobby
pastebin
telemed-rest
telemed

.gitignore

— Others: We will return to these
next...

LICENSE
README.md

build.gradle

A B

gradlew

CS@AU Henrik Baerbak Christensen

Size

618

11.25 KB

8.63 KB

697 B

517 KB

Last commit

2019-10-18

20 hours ago

2019-08-07

2019-04-30

2019-05-02

2019-10-18

2018-04-05

2018-05-01

20 hours ago

2018-04-09

2019-10-18

Clone

Message

Updated IPC test cases to have more...
Removed debug output. Updated RE...
Fixed magic constant in the marshalli...
Added note on pastebin design.

Minor code cleanup

Updated IPC test cases to have more...
Broken snapshot, Added frs.broker lib...
Release Candidate 1.2, Updated read...
Removed debug output. Updated RE...
Added Apache licence to all files

Updated IPC test cases to have more...

23

/v

AARHUS UNIVERSITET

Issues In Distribution

Why is it hard?

Y Challenge

AARHUS UNIVERSITET
 How guys like me like to code:

Definition: Object-orientation (Responsibility)
An object-oriented program is structured as a community of interacting
agents called objects. Each object has a role to play. Each object provides

a service or performs an action that is used by other members of the
community:.

« Which is then something like this on the client:

public void makeMeasurement() |
TeleObservation teleObs;
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

}

CS@AU Henrik Baerbak Christensen 25

Y Challenge

AARHUS UNIVERSITET
 However - networks only support two asynch functions!

void send (Object serverAddress, byte[] message);
byte[] receive ();

« Which is not exactly the same as

public void makeMeasurement() |{
TeleObservation teleObs:
teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);
String teleObsld = server.processAndStore(teleObs);

CS@AU Henrik Baerbak Christensen 26

/v Issues (at least!)

AARHUS UNIVERSITET

public void makeMeasurement() {

Send/recelve IS a tOO IOW Ievel TeleObservation teleObs;

teleObs = bloodPressureMeterHardware . measure ();
TeleMed server = new RemoteTeleMedOnServer (...);

programming mOdeI String teleObsld = server.processAndStore(teleOlI)s);
}

Send() does not walit for a reply from server (Asynch)

Reference to object on my machine does not make
sense on remote computer (memory address)

Networks does not transfer objects, just bits Security QA
Networks are slow | Availability QA
Networks and Remote computers may fail EEEEER=Eer
Networks are insecure, others may pick up our data

Architectural Issues: Not SWEA stuff. (Follow my EVU course once you are in a job ©)

CS@AU Henrik Baerbak Christensen 27

eV Performance

AARHUS UNIVERSITET

« Just how much slower is a network call compared to a
local in-JVM memory call?

Configuration Average time Max time (ms) Factor

(ms)
Local call 1,796 3,360 1.0
Localhost 9,731 12,806 5.4
Docker 17,091 35,873 Q.
On switch 22,817 20,427 12.7
Frankurt 494,966 513,411

« Imagine that your next trip to the supermarket for a soda
was 275 times slower???

— 10 minutes walk versus 46,8 hours walking ©

CS@AU Henrik Baerbak Christensen 28

eV Elements of a Solution

AARHUS UNIVERSITET
* On the ‘happy path’, we need to

— Make the HomeClient invoke a synchronous method call on a
remote TeleMed object using only network send/receive

— Keep our OO programming model: telemed.processAndStore(to);
« That is invoke specific method on remote object

— Convert TeleObservation object into bits to send it, and convert it
back again

— Locate the remote TeleMed object

eV, Elements Overview

AARHUS UNIVERSITET

« Solutions are
— Request/Reply Protocol
« Simulate synchronous call (solves (partly) concurrency issue)
— Marshalling
» Packing objects into bits and back (solves data issue)
— Proxy Pattern
« Simulate method call on client (solves programming model issue)
— Naming Systems
« Use a registry/name service (solves remote location issue)

« Bundled together these constitute
— The Broker pattern

/v

AARHUS UNIVERSITET

Request/Reply

/v

The Protocol

AARHUS UNIVERSITET

« Known from every WWW access you have ever made...

Definition: Request-Reply Protocol

The request-reply protocol simulate a synchroneous call between client
and a server objects by a pairwise exchange of messages, one forming the
request message from client to server, and the second forming the reply
message from the server back to the client. The client sends the request
message, and waits/blocks until the reply message has been received.

— Firefox will block until a web page has been received

CS@AU

Henrik Baerbak Christensen

32

/v

AARHUS UNIVERSITET

Client does

— Send() and
receive

Server does

— Receive() and
send()

Roles

I
|
|
|
send
J_|

Pairing Send/Receives

.server

receive

|
receive

handle Request

send

— Client is active — initiate action
— Server is reactive — awaits actions and then reacts

/v

AARHUS UNIVERSITET

CS@AU

Marshalling

Or Serialization

Henrik Baerbak Christensen

34

/v Definitions

AARHUS UNIVERSITET

Marshalling is the process of taking a collection of structured data
items and assembling them into a byte array suitable for transmis-
sion in a network message.

Unmarshalling is the process of disassembling a byte array received
in a network message to produce the equivalent collection of struc-
tured data items.

CS@AU Henrik Baerbak Christensen

35

eV Two Basic Approaches

AARHUS UNIVERSITET
JSON blood pressure

« There are two approaches
— Binary formats ‘

patientld: “'251248-1234"",
° i systolic: 128.0,
Google ProtoBuf, proprietary e, G

}

— Textual formats
« XML, JSON, proprietary

« Exercise: Costs? Benefits?

CS@AU Henrik Baerbak Christensen 36

eV And we need more

AARHUS UNIVERSITET

« As we can send only bits, we also need to marshal
Information about the method and object id!

{

methodName : "processAndStore_method"”,
parameters : |
{
patientld: 7251248 -1234"",
systolic: 128.0,
diastolic: 76.0
}

]
|

CS@AU Henrik Baerbak Christensen 37

VeV Note

AARHUS UNIVERSITET

« Marshalling is fine for atomic datatypes (int, double, char,
array, ...) but...

« What about object references?
— inventory.addCustomer(c) where c is Customer object?

— Issue: the ‘c’is an object reference but how to a use ‘c’ on the
client if the object is located on the server?

« Actually, it sort of depends on parameter passing...

/v Parameter Passing

AARHUS UNIVERSITET

 Pass by reference
— The Java style for all objects
— You do not get the Customer value, you get a reference to it!
— public void addCustomer(Customer c);

 Pass by value
— Java does this for primitive types, like int and double
— You do get the value itself
— public void deposit(double amount);

eV At Machine Level

AARHUS UNIVERSITET

« All values are stored in memory on chunks of 64 bits
— int value = 42; CO10 e
— |ntf|sh=77; | c013 =
— String a = "Hey’; co1l4

 Internally, any variable/ colé
object reference is a co19
reference/pointer = a COlB

memory address.

 In C and C++ you can get that memory address, using &
— value == 42 but &value = C010; and &fish = C013

CS@AU Henrik Baerbak Christensen 40

eV At Machine Level

AARHUS UNIVERSITET

« All values are stored in memory on chunks of 64 bits

— String a = "HeJ";
: : co10 42

* Anobject reference in Java p33 77
IS not the “Hej” characters but ¢p14
the memory address of it! cole
— a=C019 (reference to string) €019

COl1B

« Stringa=null; //C014 =0L

* a = new String(“Hej"); // allocate space for string, put
address of that space into C014

CS@AU Henrik Baerbak Christensen 41

/v ... Which is why..

AARHUS UNIVERSITET
* You are taught to use .equals() instead of ==

— If(x==7) correct — value equality
— If (s == "Hey") iIncorrect — reference equality
— If (s.equals(“Hej") correct — values match

* (Most of the time ‘s == “Hej” actually works in Java,
because the compiler treats Strings in an intelligent way
(which makes it confusing, sigh ®))

/v ... And Which is Why...

AARHUS UNIVERSITET

* You in HotStone should compare cards using reference
equality
— If (card1 == card?2)

— Because if you do
— If (cardl.equals(card2))

— Then you get it wrong! Why?
« Hint: You may have two Uno cards on the hand/field, right.
— Are they the same card?

eV Java References

AARHUS UNIVERSITET

 If you create a class, and do not override ‘toString()’ you
get a glimpse of that memory address

— The JVM does some trickery so it is not a clean/real memory
address, but anyway...

public class PrintAddr {
public static void main(String[] args) {
System.out.println("=== Java References ===");
Point p = new Point();
System.out.println("Value of p is: " + p);
}

private static @1-;1__ Point { public int x; public int y; }

csdev@m51:~/tmp$ java PrintAddr
Java References ===

Value of p 1is:

CS@AU Henrik Baerbak Christensen 44

/v In C and C++ (and Go)

AARHUS UNIVERSITET
+ In C and C++ you can actually choose...

void fooByValue(int value) { .=
void fooByRef(intx value) { ..«

— If the first call adds 10 to value, what happens to ‘value’ at the call
site?
* intv =7; fooByValue(v); print(v);

— If the second call adds 10 to value, what happens to value at the
call site?
* intv =7; fooByRef(&v); print(v);

CS@AU Henrik Baerbak Christensen 45

/v In Our Broker

AARHUS UNIVERSITET
« The semantics change in our Broker Pattern

— localObject.say(’Hello") localObject pass by reference

— remoteObject.say("Hello”) remoteQObject pass by value

_ Why?

Our Broker only supports pass by value!

e EXxercise:

(next week we introduce a trick to simulate pass by ref)

CS@AU Henrik Beerbak Christensen 46

/v Consequences

AARHUS UNIVERSITET

* If my client sends an object — pass-by-value
— Person { String name; int age} with value { “Mikkel”, 29 }

* And the server receives this object and then change
— Person { String name; int age} to value { “Magnus”, 26 }

« Then what happens in the client’s person object ?7??

/v

AARHUS UNIVERSITET

JSON Libraries

/v Libraries

AARHUS UNIVERSITET
« Every distributed system in the world needs to marshall!

* Thus - lots of marshalling libraries around ©
— Do NOT code it yourself!!! You will end reimplementing one!

« JSON | have used many libraries
— Json-simple
— Jackson JSON
— Gson

VeV Gson

AARHUS UNIVERSITET

* Gson is the most compact | have used
— (But have had trouble with ‘date’ objects that marshall incorrectly!)

It allows easy marshalling of record types

— Also known as
« PODO: Plain Old Data Objects,
« DTO: Data Transfer Object

* Record type (Pascal) / ‘struct’ (C) / record (java 17+)
— No complex methods, only set/get methods with no side effects
— Must have a default constructor

« That is: A pure data object, just storing information
— Akin a ‘resource’ in REST terminology, by the way

/v Example:

AARHUS UNIVERSITET

@Test public void shouldMarshallTeleObservation() { {
// This is a learning test, showing Gson marshalling "patientId": "251248-0000",
Gson gson = new Gson(); "systolic™: {
String json = gson.toJlson(to); "yalue™: 120,
: ” : G 4 "'IJ.l'.I.it ": "thg} "i'
assertThat(json, containsString(substring: "\"patientId\":\"251248-0000\"")); mecode™: "MSCEE019™,
"displayName": "Systolic BE"™

TeleObservation copy son.fromJson(json, TeleObservation.class); y
assertThat(copy. getPafgm'l'l_l'HJ'HWmn , 15(HelperMethods "L ey g

assertThat(copy.getSystolic().getValue(), is(value: 120.0)); "diastolic®:

assertThat(copy.getDiastolic().getValue(), is(value: 70.0)); ::va‘}uf":"m‘ "
assertThat(copy.getSystolic().getUnit(), is(value: "mm(Hg)")); unit": "mm(Hg)}",
} "code": "MSCE8020",
"displayName™": "Diastolic BE"
Fe
"rime": {
"date™: {
: " ": 2017,
« toJson(obj) honthe: 6,
"day™: 30
Marshall SO
ime": {
"hour™: 11,
e fromJson(str, type.class) minuver: 7,
second™: 26,
. . "nanao": 0
Demarshall, using given type)

CS@AU Henrik Baerbak Christensen 51

/v

AARHUS UNIVERSITET

Proxy

You know that one...

/v

AARHUS UNIVERSITET
« TeleMedProxy

CS@AU

public String processAndStore(TeleObservation teleObs) |

byte[] requestMessage = marshall(teleObs);
send (server , requestMessage);

byte[] replyMessage = receive ();

String id = demarshall(replyMessage);
return id;

Structure:
«interface»
Client Subject
operation()
realSubject.operation()% 7 Y
re ~
: .
Proxy RealSubject
‘ b operation() l | operation()

i

Henrik Baerbak Christensen

Example

53

/v Note
AARHUS UNIVERSITET

« The algorithm of all methods in the proxy will be the same
— Marshall parameters, send, await reply, demarshall, return

« Can be auto generated — this is what RMI does

* We will hand-code it, because
— ... it is the learning goal of this course ©

— And it actually makes sense if you want very strict control of
architectural attributes like performance and availability

« And, if you do not, you are in trouble &
— Find more info in

Teaching Distributed Programming — Revisiting the Broker
Pattern

/v why QAs

AARHUS UNIVERSITET

Why? One Example:

You have a lot of accessor methods, and a single mutator
— I.e. state only changes when mutator is invoked!

RMI will autogenerate proxy (send/receive) for every
method

That Is, every accessor method call will generate network
traffic!

Performance Antipattern: Chatty interface

Pattern: Chunky interface
— All accessors just return cached state in the proxy instance itself!

/v

AARHUS UNIVERSITET

Name Services

Finding the Object to Talk to

/v Coupling Proxy and ‘server-side’
AARHUS UNIVERSITET
« Ok a Proxy “plays the client side role” of the real object

on the server side...

Structure:

«interface»
Subject

Client

operation()

realSubject.operation()%

L 4 N 5 __j

Proxy RealSubject

o operation() operation()

« But what if there are many ‘RealSubjects’?
— Like 10.000 instances of ‘Customer’ on the server?

eV Now What?

AARHUS UNIVERSITET

 In distributed computing this is tricky
— How to refer to a specific memory address in a remote server???

Server

custAProxy = ?7?7??

custBProxy = ??7?7?

CS@AU Henrik Beerbak Christensen 58

/v This Week (only!)

AARHUS UNIVERSITET

« We will solve this issue (partly) next week, but for now...

— We just have one object on the server making it easier
* If we know the IP of the machine — we can access that object ©

Client DNS name

teleMed = new 0100h
Proxy()

0102h

The only object! 4h

0106h

CS@AU Henrik Beerbak Christensen 59

Y Summary

AARHUS UNIVERSITET

* The Broker Pattern combines
— Request/Reply protocol
— Marshalling
— Proxy pattern
— Naming Systems (next week)

« ... to produce something that (on happy days)

« Allows an Object Oriented Programming model to apply
to distributed computing

	Slide 1: Software Engineering and Architecture
	Slide 2: Intro…
	Slide 3: Distributed System
	Slide 4: Limitations
	Slide 5: And Limiting ourselves
	Slide 6: Client-Server
	Slide 7: Client-Server
	Slide 8: Or Visually
	Slide 9: Or Visually
	Slide 10: Or Visually
	Slide 11: One Word of Caution
	Slide 12: The History
	Slide 13: Grounding Example
	Slide 14: Case
	Slide 15: Vision
	Slide 16: Story 1
	Slide 17: Story 2
	Slide 18: (What is XDS)
	Slide 19: (What is HL7)
	Slide 20: TeleMed Design
	Slide 21: Demo
	Slide 22: Source Code
	Slide 23: Source Code
	Slide 24: Issues in Distribution
	Slide 25: Challenge
	Slide 26: Challenge
	Slide 27: Issues (at least!)
	Slide 28: Performance
	Slide 29: Elements of a Solution
	Slide 30: Elements Overview
	Slide 31: Request/Reply
	Slide 32: The Protocol
	Slide 33: Pairing Send/Receives
	Slide 34: Marshalling
	Slide 35: Definitions
	Slide 36: Two Basic Approaches
	Slide 37: And we need more
	Slide 38: Note
	Slide 39: Parameter Passing
	Slide 40: At Machine Level
	Slide 41: At Machine Level
	Slide 42: … Which is why…
	Slide 43: … And Which is Why…
	Slide 44: Java References
	Slide 45: In C and C++ (and Go)
	Slide 46: In Our Broker
	Slide 47: Consequences
	Slide 48: JSON Libraries
	Slide 49: Libraries
	Slide 50: Gson
	Slide 51: Example:
	Slide 52: Proxy
	Slide 53: Example
	Slide 54: Note
	Slide 55: Why QAs
	Slide 56: Name Services
	Slide 57: Coupling Proxy and ‘server-side’
	Slide 58: Now What?
	Slide 59: This Week (only!)
	Slide 60: Summary

